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Proton model of ferroelectrics with tunneling in the static fluctuation approximation

R. R. Nigmatullin,1,2 A. A. Khamzin,1 and H. B. Ghassib2
1Theoretical Physics Department, Kazan State University, Kazan, 420008 Tatarstan, Russia

2Department of Physics, University of Jordan, Amman, Jordan
~Received 21 June 1999!

The transverse Ising model is considered in thestatic fluctuation approximation. This hinges on the replace-
ment of the local field operator with its mean value; only the quadratic fluctuations of the local field are
retained. The model is applied to ferroelectrics of the order-disorder type, such as monoaxial crystalline
threeglycinsulfate. Analytic expressions are derived for the spontaneous polarization, the specific heat, the pair
correlation function, and the static susceptibility of this ferroelectric. Its main characteristics are then deter-
mined numerically as functions of the temperature. In particular, its critical behavior is obtainedautomatically
for a specific value of some ‘‘control’’ parameter. It is predicted that, with respect to this parameter, the
specific heat exhibits a logarithmic behavior to the right of the critical point; this is interpreted as a conse-
quence of the long range and axial anisotropy of the dipole-dipole interaction. In passing, the behavior of the
lattice Green function for the anisotropic dipole-dipole potential near the critical point is thoroughly examined.

PACS number~s!: 05.70.Ce, 05.70.Fh, 05.70.Jk
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I. INTRODUCTION

The proton model with tunneling was suggested by Bl
@1# in 1960 for describing the soft-mode behavior in ferr
electrics of the order-disorder type with hydrogen bon
where lower states predominate. The main success of
model was in explaining the substantial isotopic shift of t
critical temperatureTc . The model hinges on the suggestio
that each proton can tunnel between two equilibrium po
tions of the hydrogen-bond potential. If the local potent
has two deep minima then, for statistical purposes, it is
teresting to observe that there exist only two degene
states, each state belonging to one local minimum. If
neglect the excited vibrational states and consider onl
two-level system, then the process of tunneling can be
scribed in terms of12 pseudospin. As a result of such a trans
formation in the pseudospin formalism, the tunneling Ham
tonian will coincide with the Hamiltonian of the Ising mod
in a transverse field:

H52D(
f

Sf
x2

1

2 (
f f 8

U f f 8Sf
zSf 8

z . ~1!

Here D is the frequency of the tunneling andU f f 8 is an
intercell interaction having for most ferroelectrics the anis
tropic dipole-dipole form. This model can be used as a p
liminary step for describing the structural transitions of t
order-disorder-type ferroelectrics with tunneling. It has be
suggested by Kobayashi@2# that the hydrogen phonon mode
play an important role in K2H2PO4.

On the other hand, Hamiltonians with spin-phonon int
action containing linear phonon operators can again be
duced, after suitable canonical~unitary! transformations, to a
Hamiltonian of type~1!, albeit with a modified interaction
between pseudospins. Accordingly, it is useful to investig
thoroughly the thermodynamic properties of the systems
scribed by Hamiltonian~1!.
PRE 611063-651X/2000/61~4!/3441~9!/$15.00
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In the present paper, this is carried out within the fram
work of thestatic fluctuation approximation~SFA!. This ap-
proach was suggested earlier by one of the authors~R.R.N.!
and successfully used for calculating the thermodyna
properties of the Ising and Heisenberg models@3#.

In fact, the SFA can be invoked for calculating therm
dynamic properties and equilibrium correlation functio
~CFs! of a variety of many-body systems with strong inte
particle interactions. A small parameter isnot used and the
approach can be applied to various geometrical configu
tions anddifferent boundary conditions, including the con-
ventional periodic boundary conditions widely used in sta
tical mechanics.

The SFA hinges on the replacement of the local field o
erator with its mean value~a c number!; only the quadratic
fluctuations of the local field are retained. As a result,
lattice systems, the so-calleddifference long-range equation
~DLREs! can be obtained.~This term was taken from Ref
@4#, where such equations were used to obtain the exact
lution for the ferromagnetic Ising chain.! In general, the ex-
act DLREs for Hamiltonian~1! are nonlinear and analytic
methods of solution of nonlinear difference equations are
known. However, the above replacement leads to the
proximate linearization of the exact DLREs and transform
tion of the conserved nonlinearity into a system of se
consistent equations. Below~Sec. III! we show how this
single and controllable replacement is sufficient to calcul
all main thermodynamic characteristics of the system. P
to this ~Sec. II!, we present the basic ingredients of the SF
together with the linearized DLRE for the transverse Isi
model. Our conclusions are summarized in Sec. IV a
mathematical details are relegated to an appendix.

II. PRINCIPLES OF THE SFA: THE LINEARIZED DLRE
FOR THE TRANSVERSE ISING MODEL

For the present purposes it is convenient to express
initial Hamiltonian ~1! in the form
3441 © 2000 The American Physical Society
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H52(
f

~DSf
x1s fSf

z!, ~2!

wheres f defines the local field operator:

s f[hf1(
f 8

U f f 8Sf 8
z . ~3!

The Heisenberg equations of motion for the pseudos
componentsSf

a ~a5x,y,z; f is a fixed node of a lattice! are

dSf
x

dt
5@H,Sf

x#52 is fSf
y , ~4a!

dSf
y

dt
5@H,Sf

y#52 iDSf
z1 is fSf

x , ~4b!

dSf
z

dt
5@H,Sf

z#5 iDSf
y . ~4c!

Heret[ i t . According to the SFA,

~s f !
2>^~s f !

2&. ~5!

The underlyingphysical meaningis the following. The true
quantum-mechanical spectrum of the operators f defined by
Eq. ~3! is replaced with a distribution. It is then attempted
incorporate into the picture the moments of this distributio
As a first step we retain thequadratic fluctuationsof s f .
This leads to the approximate but linearized DLREs wh
can be solved self-consistently by well-known mathemat
methods. Approximation~5! allows us to increase the regio
of applicability of the SFA~in comparison with previous
attempts@3#! and obtain the DLREs for a wide class
Hamiltonians.

With this approximation, the solutions of the Heisenbe
equations of motion~4! can be obtained in the following
closed form:

Sf
x~t!5Sf

x~0!1
@Sf

x~0!^~s f !
2&2Sf

z~0!Ds f #

V f
2

3@cosh~V ft!21#2 i
s f

V f
sinh~V ft!Sf

y~0!,

~6a!

Sf
y~t!5

@Sf
x~0!s f2Sf

z~0!D#

V f
sinh~V ft!1cosh~V ft!Sf

y~0!,

~6b!

Sf
z~t!5Sf

z~0!1
@Sf

z~0!D22Sf
x~0!Ds f #

V f
2

3@cosh~V ft!21#1 i
Sf

y~0!D

V f
sinh~V ft!. ~6c!

HereV f[AD21^(s f)
2& is the fundamental frequency of th

dipole moment induced by the quadratic fluctuations of
local field. These solutions allow us to find the CF
^Sf

zA&,^Sf
xA&,^s fA&, whereA is an operator containing a
in

.

h
l

e
,

arbitrary combination of pseudospin variablesSf
z , with

nodesnot coincidingwith the chosen nodef ( f 8Þ f ). The
equations for these average values can be obtained usin
well-known relation

^B~b!C&5^CB&, ~7!

B,C, being any quantum mechanical operators. Putting
stead ofB the above solutions for the pseudospin comp
nents Sf

a(t) (a5x,y,z) and instead ofC the operators
Sf

gA (g5x,y,z), then using the commutation rules fo
pseudospin operators (S5 1

2 ), one can obtain, after some a
gebraic manipulations, the following DLREs for the syste

^Sf
zA&5h f^s fA&. ~8!

^Sf
xA&5D•h f^s fA&, ~9!

where

h f[
1

2V f
tanhS bV f

2 D . ~10!

For the one-dimensional Ising model of ferromagneti
equations of this kind were obtained in Ref.@4#; these made
it possible to determine the exact solution for various bou
ary conditions. In the SFA the DLREs are linear and se
consistent. The DLREs~8!–~10! define all thermodynamic
properties of the Ising model in the transverse field.

We shallassumethat ~i! a homogeneous external field
applied, ~ii ! the lattice is translationally invariant, and~iii !
the quantitieshf andV f do not depend on the node indexf;
henceforth they will be denoted byh andV. Now, putting in
Eq. ~8! A51, we obtain the following equation for the ave
age dipole moment:

^Sf
z&5hf1h fU~0!^Sf

z& ~11!

or

^Sz&5
hp

U~0!~12p!
. ~12!

Herep is given by the dimensionless expression

p[h(
f 8

U f f 85hU~0!, ~13!

U(0) being the zero Fourier-component of the potential.
From Eq.~11!, denotingDSf

z[Sf
z2^Sf

z&, we can rewrite
Eq. ~8! in a form more convenient for practical calculation
namely,

^DSf
zA&5h^Ds fA&. ~14!

From this last equation one can determine the pair CF.
this end we put in Eq.~14! A5DSf 8

z ; so that
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^DSf
zDSf 8

z &c5h^Ds fDSf 8
z &

5hU f f 8^~DSf
z!2&

1h (
f 9Þ f 8

U f f 9^DSf 9
z DSf 8

z &c , ~15!

^¯&c signifying the true correlators between pseudospins
cated at different nodes of a lattice. To find the pair CF fro
Eq. ~15!, we imposeperiodic boundary conditions. In this
case, using the respective Fourier transforms of the pair
and potential, we find

^DSk
zDS2k

z &5^~DSf
z!2&F 1

12hU~k!
21G ~16!

or, in the node representation,

^DSf
zDSf 8

z &c5
^~DSf

z!2&
N (

k

exp~ ik"r f f 8!

12hU~k!

[^~DSf
z!2&G~h,r f f 8!, ~17!

G(h,r f f 8) being the lattice Green function.
From Eq.~12! it follows that p51 is a singular point. If

p51, then, ath→0, ^Sz& can assume any value. Thus, it
convenient to choosep as an independentparameter. The
value p51 defines a possible phase transition for the sp
taneous polarization (;^Sz&). To see this we first examin
the local-field dispersion

V5AD21^s f&
21^~Ds f !

2&. ~18!

From Eqs.~16! and ~17!

^~Ds f !
2&5(

f 8 f 9
U f f 8U f f 9^DSf 8

z DSf 9
z &

5
^~DSf

z!2&
N (

k

U~k!U~2k!

12hU~k!

[
U~0!2^~DSf

z!2&
p2 @G~p!21#. ~19!

Here G(p)[G(p,0) defines the momentum-space latti
Green function

G~p![
1

N (
k

1

12pU~k!/U~0!
, ~20!

which depends on the dimension, geometry of lattice and
form of the potential. Using Eqs.~3! and ~19!, we have (h
50)

V~p,D,^Sz&!

5AD21^Sz&2U2~0!1S 1

4
2^Sz&2D U2~0!

p2 @G~p!21#.

~21!
-

F

-

e

Invoking Eq. ~10!, which itself represents a self-consiste
equation that defines the temperatureT(p,D,^Sz&), together
with Eq. ~13!, we obtain

T~p,D,^Sz&!5
V~p,D,^Sz&!

2 tanh21S 2p
V~p,D,^Sz&

U~0! D . ~22!

Next, we determine the average energy. From Eq.~2!,

^H&52(
f

^~DSf
x1Sf

zs f
z!&52N~D^Sx&1^Sf

zs f
z&!.

~23!

Putting in Eq.~8! A5s f
z and in Eq.~9! A51, and using our

main approximation~5!, we finally arrive at

1

N
^H&52

p

U~0!
@V2~p,D,^Sz&!#. ~24!

Now, above the transition temperatureTc , ^Sz&50 and

^Sx&5
D

2V~p,D,^Sz&!
tanhS V~p,D,^Sz&!

2T D5
D

U~0!
p.

~25!

This equation describes the paraelectric phasewithout spon-
taneous polarization.

Below the transition temperature, we obtain the order
effect by putting in Eq.~10! p51. We then have

1

U~0!
5

1

2V~1,D,^Sz&!
tanhS V~1,D,^Sz&!

2T D , ~26!

where

V~1,D,^Sz&!

[AD21^Sz&2U2~0!1~ 1
4 2^Sz&2!U2~0!@G~1!21#.

~27!

Equations~26! and ~27! define the spontaneous polarizatio
as a function ofT. It follows that

0uT5Tc
<^Sz&<A1

4
2S D

U~0! D
2 1

22G~1!
U

T50

. ~28!

It should be stressed that atT50 the upper value is less tha
the corresponding value obtained in the framework of
mean-field approximation@5,6# where, at T50, ^Sz&
5$ 1

4 @D/U(0)#2%1/2, since 1<G(1),2.
The ordered phasêSx& is temperature independent:

^Sx&5
D

U~0!
. ~29!

This coincides with the result given by mean-field theory@6#.
The critical temperature is defined from Eq.~22! at p51 and
^Sz&50:



-
he

a

ion

t a
n-
hi

m

at

is
at
u
ea

ly
f a

a
na
xi

the
lat-
the
of

er-
ter-
for
he
ch

ten-
c-
rm
al-
s

the
to

pe

are-
n

ity
o-

the

a-
are
en
le

ial

are

ical

ice
g

3444 PRE 61R. R. NIGMATULLIN, A. A. KHAMZIN, AND H. B. GHASSIB
Tc5
U~0!A@2D/U~0!#21G~1!21

4 tanh21@A@2D/U~0!#21G~1!21#
. ~30!

This equation describesTc as a function of the tunnel split
ting D. This is different from the value corresponding to t
ordinary Ising model in the SFA (D50):

Tc5
U~0!AG~1!21

4 tanh21@AG~1!21#
~31!

up to the valueTc50, whereD[@U(0)/2#A22G(1). If D
.@U(0)/2#A22G(1), the ordering effect does not play
role.

The static susceptibility above the critical pointx(k) is
calculated easily with the help of the fluctuation-dissipat
theorem

kBTx~k!5^DSk
zDS2k

z &. ~32!

Using Eq.~16!, we finally obtain forT>Tc :

x~k!5
1

4T~p,0! F 1

12pU~k!/U~0!
21G , ~33!

whereT(p,D,^Sz&) is defined by Eq.~22!. In particular, the
homogeneous part of the static susceptibility aboveTc is
defined by the expression

@x~0!#2154T~p,0!
12p

p
. ~34!

Clearly, then, the static susceptibility has a singular poin
p51—in conformity with the foregoing conclusion concer
ing the possibility of a phase transition in the system at t
point.

Equations~10!, ~12!, ~17!, ~20!, ~21!, ~22!, and~30! form
a closed system that completely defines the thermodyna
of the transverse Ising model (S5 1

2 ) for a regular lattice of
any dimension and for anarbitrary interaction between
spins.

It is worth noting that approximation~5! incorporates the
higher-order fluctuations of the local field in the sense th

~s f !
2n>^~s f !

2&n; ~s f !
2n11>s f^~s f !

2&n. ~35!

The main difference of the SFA from the exact solution
that the true quantum-mechanical spectrum of the oper
s f is defined by finite or infinite eigenvalues and all calc
lations are finally reduced to the consideration of nonlin
DLREs which at presentcannot be solved analytically. To
avoid this principal difficulty, the DLREs are approximate
linearized and the nonlinearity is retained in the form o
self-consistentsystem of equations@in our case Eqs.~8!–
~10!#.

III. THERMODYNAMICS OF THE MODEL
WITH DIPOLE-DIPOLE FORCES

The full solution of the above system of nonlinear equ
tions can only be obtained by numerical methods. An a
lytic solution is out of the question unless additional appro
t

s

ics

or
-
r

-
-

-

mations are made. This is related to the fact that
thermodynamics of the model crucially depends on the
tice Green function which, as already remarked, includes
dimension, geometry of lattice and the Fourier-transform
the relevant potential.

In the theory of magnetic models with short-range int
actions the Fourier-transform of the potential can be de
minedexactly; in some cases even the analytic expression
the lattice Green function can be found. However, in t
theory of structural phase transitions, the problem is mu
more complicated. In that case we have a long-range po
tial, presumably with an anisotropic dipole-dipole intera
tion. The exact analytic evaluation of the Fourier-transfo
of this potential is not possible; so is the corresponding c
culation of the lattice Green function. Major simplification
are needed if progress is to be made in this respect.

Thus, having demonstrated qualitatively the effects of
local-field quadratic fluctuations, we shall limit ourselves
the long-wavelengthapproximation. Another simplification
will be the restriction to monoaxial crystals. The archety
of such ferroelectrics is threeglycinsulphate~TGS!. This
ferroelectric of the order-disorder type has been studied c
fully both experimentally and theoretically; it has bee
shown that it exhibits a critical phenomenon in the vicin
of Tc @6#. Accordingly, it is reasonable to assume that mon
axial crystals of the TGS type can be described by
present model.

Unfortunately, however, the long-wavelength approxim
tion of U(k) cannot lead to a closed expression; so we
forced to consider only the expansion of the lattice Gre
function nearTc as the most interesting region in the who
temperature range.

In the long-wavelength approximation for the monoax
ferroelectric, then, the potentialU(k) has the form@7#

U~kx ,ky ,kz!5U~0!2ak21bkz
22gS kz

2

k2D 1O~kz
4,k4!.

~36!

The expansion coefficients depend on the structure; these
given for some types of lattices in Table I@8#. The corre-
sponding expansion for the Green function near the crit
point has the form~see the Appendix!:

G~«!5G~0!2 (
n50

`

an«n12 ln~«!1 (
n51

`

bn«n;

«[~12p!1/2. ~37!

Having obtained the analytic expression for the latt
Green function nearTc , one can consider the correspondin
specific-heat behavior. The specific heatCh is defined by

TABLE I. Values of the coefficients in expressions~36! and
~44! for cubic lattices.

Lattice z va U(0) a b g

sc 6 1 4p/3 20.1649 20.4945 4p
bcc 8 1 31/2p 0.247 0.709 3p31/2

fcc 12 221/2 4(21/2)p/3 0.237 0.713 4p21/2
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Ch5
1

N

d^H&
dT

, ~38!

the average energŷH& being given by Eq.~24! and the tem-
peratureT by Eq. ~22!. In the paraelectric phase (^S&50):

Ch5
1

N

~d^H&/dp!

dT/dp

5
pV2~p!

T~p!

3F @V2~p!22D2#/U~0!2@U~0!/4p#@dG~p!/dp#

R~p!$D21@U2~0!/8p#@dG~p!/dp#%2V2~p! G ,
~39!

R~p!512
4pT~p!

U~0!$22G~p!2@2pD/U~0!2#%
. ~40!

To first approximation we can put in Eq.~39! p51, since all
the quantities in this expression are finite at the critical po
except the derivativedG(p)/dp. Expansion~37! yields

dG~p!

dp
>S a0

2
2b2D2

b1

2«
2a0 ln~«!, ~41!

which is divergent at the critical point. However,in the limit
as p→1, we find that the specific heat at the transition po
remains finite with the value

FIG. 1. The dependence of the critical temperatureTc /U(0) of

the fcc lattice on the tunneling parameterD̄5D/U(0). The maxi-

mum value of Tc /U(0) at D̄50 equals 1.1230;Tc50 at D̄
51.905.

FIG. 2. The dependence of^Sx& for the fcc lattice onT/Tc for

some values ofD̄.
t,

t

Ch52
2V2~1!

R~1!U~0!Tc
. ~42!

Clearly, it is impossible to find an expansion for the spec
heat in terms of the temperature. This is related to the
that the expansion of the temperature deviationt(«)
[T(«)/Tc21 has the form

t~«!'u1«1u2« ln~«!1O~«2!, ~43!

which does not have an inverse«~t!. The explicit forms of
the coefficientsu1 andu2 are somewhat cumbersome and a
not given here.

Similarly, it can be readily shown that to the left of th
critical point the specific heat also remains finite with t
same value as Eq.~42!. Thus,the SFA predicts the absence
of the specific-heat jump at the critical point with long-rang
dipole-dipole forces.

The values of the lattice Green function can be det
mined for the whole range of the parameterpP@0,1# only
numerically. To this end we use

G~p!5
va

~2p!3 E
2p

p E
2p

p E
2p

p d3k

12pU~k!/U~0!
, ~44!

where the integration runs over the main Brillouin zon
U(k) being given by Eq.~36!. The temperature dependenc
of thermodynamic quantities can then be readily determi
in the present model.

Figure 1 gives the dependence of the critical tempera
Tc /U(0) on the tunnel splittingD̄[D/U(0). In Fig. 2, ^Sx&
is plotted as a function ofT/Tc . As already pointed out,^Sx&
remains constant for the temperature rangeT/Tc<1. Figure
3 shows the spontaneous polarization (}^Sz&) as a function
of T/Tc for several values ofD̄. The tendency of̂ Sz& de-
creasing with increasingD is evident. In Fig. 4, the tempera
ture dependence of the specific heatCh(T/Tc) is given for
various values ofD̄. It is interesting to note this nonstanda
behavior ofCh , especially in the intervalD̄P@1.5,1.9#, the
local maximum appearing in the temperature rangeT/Tc
>1. This behavior can only be ascribed to the long-ran
anisotropic dipole forces.

Two remarks are in order here. The first is that, near
critical point, Ch behaves almost logarithmically—a cons

FIG. 3. The dependence of the spontaneous polariza
(}^Sx&) of the fcc lattice on the reduced temperature for so

values ofD̄.
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3446 PRE 61R. R. NIGMATULLIN, A. A. KHAMZIN, AND H. B. GHASSIB
quence of theapproximateinversion of Eq.~43!. This agrees
qualitatively with experimental observations@9#. However,
for a detailed comparison with experiment, a separate inv
tigation is called for. The second remark is that Figs. 4~a!
and 4~b! demonstrate clearly the competition between
singular component ofCh ~predominating at smallD values!
and the regular contribution~predominantly at largeD val-
ues;D̄→D̄c'1.9, where the order parameter^Sz& is close to
zero!. This effect has been known for some time in t
theory of the anisotropic Ising model@10#; in Ref. @9# it was
taken into account qualitatively by adding a constant to
fitting expression forCh .

The pair CF is defined by Eq.~17! in terms ofp(T), the
relative distanceR andU(k). It is interesting to compare th
asymptotic behavior (R→`) of this function to the well-
known Ornstein-Zernike result. The symmetry ofU(k) de-
fines the extreme anisotropy of the correlations involved
therefore makes sense to consider the behavior of this f
tion asR→` along the axis of anisotropy~longitudinal cor-
relations! as well as perpendicular to the axis~transverse
correlations!.

Using Eqs.~17! and~36!, we can write the following ex-
pression for̂ Sf

z Sf 1R
z &:

^Sf
z Sf 1R

z &c5
12^Sz&2

4N

3(
k

exp~ ik•R!

12p@12ak21bkz
22g~kz /k!2#/U~O!

,

~45!

the long-wavelength contributions dominating. Replacing

FIG. 4. The dependence of the dimensionless specific

Ch /U(0) of the fcc lattice onT/Tc for some values ofD̄.
s-

e

e

It
c-

e

summation by an integration, we conclude that this probl
is reduced to the investigation of the following integral~for
longitudinal correlations!:

^Sf
z Sf 1R

z &c5
12^Sz&2

32p3

3E
2`

` E
2`

` E
2`

` exp~ iRz!dxdydz

12p@12ar 21bz22g~z/r !2#
;

~46!

r 2[x21y21z2. A similar expression for the transverse C
can be obtained, but with exp(iRx) replacing exp(iRz). Simi-
lar integrals are considered in Ref.@11#.

It is concluded that the asymptotic expansion of thelon-
gitudinal CF consists of two components

^Sf
z Sf 1R

z &5^Sf
xSf 1R

z &11^Sf
zSf 1R

z &osc. ~47!

The first two terms of the first component are of the form

^Sf
z Sf 1R

z &1 '
R→`

1

4 S A~p!

R3 1
B~p!

R5 D . ~48!

In turn, the Ornstein-Zernike theory for isotropic potentia
predictsthe asymptotic form (1/R)exp@2R/x1/2# ~x being the
homogeneous part of the static susceptibility!. The second
component defines the oscillating part of the longitudin
correlation function

^Sf
z Sf 1R

z &osc '
R→`

1

4 S C~r!
cos~jR!

jR
2D~p!

sin~jR!

~jR!2 D ,

~49!

wherej[A(12p)/(12p1gp).
A similar result applies totransversecorrelations. In that

case, the first two terms of the first component read

^Sf
z Sf 1R

z &1 '
R→`

1

4 S M ~p!

R3 1
N~p!

R5 D , ~50!

At the critical point (p51), the first two terms have the
asymptotic form

^Sf
z Sf 1R

z & '
R→`

1

8paR
2

~3a2b!

8paAagR2

~ longitudinal part of the CF!. ~51!

This behavior remains valid for the temperature rangeT
<Tc . The above expression is proportional to (12^Sz&2),
because in the ferroelectric phasep51 and the spontaneou
polarization is the order parameter.

The dependence of the CFs onT and R can be found
numerically. This has been undertaken for the face-cente
cubic lattice in the long-wavelength approximation forU(k).
The results are given in Figs. 5–8.
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IV. CONCLUSION

In this work we have suggested an approximation~the
SFA! for calculating the thermodynamic characteristics
the proton model with tunneling. Our method can undou
edly be generalized for more complex spin Hamiltonia
with an arbitrary interparticle interaction.

Thephysical meaningof this approximation is the follow-
ing. The true quantum-mechanical spectrum of the oper
s f @defined by Eq.~3!# is replaced with a distribution. As a
first step, we have calculatedself-consistentlythe quadratic
fluctuationsof s f

z which lead to the approximate butlinear-
izedDLREs @Eqs.~8! and ~9!#; these equations can, in turn
be solved by well-known mathematical methods. The S
has allowed us to consider the complete thermodynamic
the model; specifically, we have obtained the analytic
pressions for the spontaneous polarization, the specific h
the pair CF, and the static susceptibility of the order-disor
ferroelectric. We have then determined numerically the m
characteristics of the system versus the reduced temper
T/Tc and the relative distanceR/a ~a being the lattice con-
stant!. The logarithmic behavior of the specific heat to t
right side of the critical point has been predicted; it is
consequence of the long-range and axial anisotropy of
dipole-dipole interaction. The SFA has enabled us to exp
the asymptotics of the CFs at large interparticle separati
In fact, our present approach can be regarded as a b
theory for determining all integral characteristics of t
transverse Ising model. No other systematic microscopic
proaches exist except the mean-field approximation
renormalization group theory@6#. Our results are essentiall

FIG. 5. The dependence on the relative distanceR of the longi-
tudinal CF for the sc lattice at the critical point.

FIG. 6. The dependence on theR/a of the transverseCF for the
sc lattice at the critical point.
f
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p-
d

generalizations of those obtained within that approximati
The main deficiency of the SFA is that it cannot take in

account thedynamicsof the local fields~the operators f is,
in effect, the approximate integral of the motion!. This is

FIG. 7. The dependence onT/Tc of the longitudinal CFs
~a! ^4Sf

z Sf 1a
z & and~b! ^4Sf

z Sf 13a
z &, for the sc lattice for two values

of D̄.

FIG. 8. The dependence onT/Tc of the transverse CFs
~a! ^4Sf

x Sf 1a
x & and~b! ^4Sf

x Sf 13a&, for the sc lattice for two values

of D̄.
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precisely why we have qualified this approach as thestatic
fluctuation approximation. However, this approximation c
boast the following features:

~1! Its simplicity and transparent physical content. In a
dition, it can readily be applied to a wide class of physic
systems with an arbitrary interparticle potential and an a
trary integral dimension.

~2! Critical phenomena in the system can be described
invoking the controllable approximation~5! and nothing
else. In particular, it is not necessary to develop any spe
methods for phase-transition phenomena; the critical beh
ior is obtainedautomaticallyfor some value of the contro
parameter~in our case,p51!. The possibility to calculate
CFs ofany orderby means of DLREs distinguishes the SF
from other approaches based on some modification or
other of the mean-field approximation.

~3! The SFA gives reasonable accuracy in estimatingTc
and other thermodynamic parameters for a wide range
temperature and external fields.

~4! The principal differencebetween the exact solutio
and the SFA is the following. The attempt to obtain the ex
solution leads to DLREs containing higher order~not only
quadratic! fluctuations of the local field~infinite in general!.
It yields a system of nonlinear difference equations; anal
methods of solution arenot known. In the SFA we are forced
to consider only quadratic fluctuations of the local fie
higher-order fluctuations being incorporated only in so
average sense@see Eq.~35!#. The DLREs obtained in this
case arelinear and self-consistent; they have enabled us t
use well-known mathematical methods to determine
complete thermodynamic solutions.
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APPENDIX: BEHAVIOR OF THE LATTICE GREEN
FUNCTION FOR THE ANISOTROPIC DIPOLE-DIPOLE

POTENTIAL NEAR THE CRITICAL POINT

The investigation of the critical behavior of the mod
considered requires the evaluation of the lattice Green fu
tion

G~p!5
va

~2p!3 E
2p

p E
2p

p E
2p

p d3k

12pU~k!/U~0!
, ~A1!

va being an elementary volume of the reciprocal lattice a
U(k) the Fourier transform of the interaction potential.
the long-wavelength approximation for the monoaxial fer
electric,U(k) has the form@7#

U~kx ,ky ,kz!5U~0!2ak21bkz
22gS kz

2

k2D 1O~kz
4,k4!,

~A2!

wherea,b,g are the expansion coefficients depending on
dimension of the lattice~for some types of lattices these a
given in Table I!.
-
l
i-

y

c
v-

n-

of

t

c

,
e

e

f
.

c-

d

-

e

As can be seen from Eq.~A1!, the integration runs ove
the main Brillouin zone representing a cube with side 2p/a.
To proceed further the true first zone is replaced with
sphere whose radiusQ given by 4pQ3/35(2p)3. G(p) will
then assume the form

G~p!5
va

2p2 E
0

Q

k2dkE
0

1

dxFp~g2bk2!

3S x21
12p1pak2

p~g2bk2! D G21

, ~A3!

x[cosu. Integration over the angular variable becom
trivial and we get

G~p!5
va

2p2 E
0

Q

k2dx
a tanAp~g2bk2!/~12p1pak2!

Ap~g2bk2!/~12p1pak2!

5
va

4p2pAa
E

0

Q2A k

k1l2 C~k,l!dk. ~A4!

Here

l[@~12p!/ap#1/2>«/a1/2;

C~k,l!5
a tanA~g2bk!/a~k1l2!

A~g2bk2
. ~A5!

The function C(k,l) is continuous in the region
$@0,Q2#3@0,l0#%,@l0.0, (g/b.Q2)#, but differentiable
only in the region$@0,Q2#3(0,l0)% because its derivative
C8(0,l)}1/l. A Taylor-series expansion is therefore out
the question at this stage. To circumvent this difficulty w
introduce the variablet[A(l21k)@12(b/g)k#. After
some transformations we obtain the following expression
the integral~A4!:

G~p!5
va

2p2pAag
E

l

B At22l2

@11~b/g!t2#3/2a tanSAa

g
t D dt

>
va

2p2Aag
E

0

B
At~ t12l! C~ t,l!dt, ~A6!

where

B[A Q21l2

12~b/g!Q2 '
1

A12~b/g!
; ~A7!

C~ t,l!5
a tan@~ t1l!Aa/g#

@11~b/g!~ t1l!2#3/2. ~A8!

The functionC8(t,l)P$@0,B#3@0,l0#%; so it canbe ex-
panded into a Taylor series overt:

C~ t,l!5 (
m50

`
1

m!
S ]mC~ t,l!

]tm D
t50

tm[ (
m50

`

cm~l!tm.

~A9!

Inserting this expansion into Eq.~A6!, we find
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G~l!>
va

2p2Aag
(

m50

`

cm~l!E
0

B

tm11/2A112ldt

5
va

2p2Aag
(

m50

`

cm~l!FS 1

2
;m1

3

2
;2l D , ~A10!

The asymptotic expansion of the integral

lim
«→0

F~s,d,«!5E
0

L

td21~ t1«!sdt, ~A11!

is standard. For the cases1d ~[ an integer! this has the
following form:

F~s,d,«!5«NF S N
s D lnS L

« D1~21!N11
G~N2s1r!

G~2s!G~N111r!

3@c~N2s!2c~N11!#G1 (
n50,~ÞN!

LN2n

N2n
«n,

~A12!

G(x) being the gamma function andc(x) the digamma func-
tion. In our cases[ 1

2 , d[m1 3
2 , N[m12, L[B, «

[2l. Thus,
l

G~l!5
va

2p2Aag
(

m50

`

cm~l!H ~2l!m12
G~m13/2!

Ap~m12!!

3F lnS B

2l D1~21!m
c~m13/2!2c~m11!

2 G
1 (

n50,Þm12

`
Bm122n

m122n
~2l!nJ . ~A13!

Expanding the coefficientscm(l) in a Taylor series

cm~l!5(
l 50

` cm
~ l !

l !
l1, ~A14!

we finally obtain

G~«!5G~0!2 (
n50

`

an«n12 ln «1 (
n51

`

bn«n, ~A15!

where

G~0!5
va

p2Aag
(

m50

`
cm~0!Bm12

m12
, a0[

va

4pAag
.

~A16!

The remaining coefficientsa0 ,bn (n51,2, . . . ) aresome-
what cumbersome and will not be given here.
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