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Proton model of ferroelectrics with tunneling in the static fluctuation approximation
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The transverse Ising model is considered ingtagic fluctuation approximatiorThis hinges on the replace-
ment of the local field operator with its mean value; only the quadratic fluctuations of the local field are
retained. The model is applied to ferroelectrics of the order-disorder type, such as monoaxial crystalline
threeglycinsulfate. Analytic expressions are derived for the spontaneous polarization, the specific heat, the pair
correlation function, and the static susceptibility of this ferroelectric. Its main characteristics are then deter-
mined numerically as functions of the temperature. In particular, its critical behavior is obtait@datically
for a specific value of some “control” parameter. It is predicted that, with respect to this parameter, the
specific heat exhibits a logarithmic behavior to the right of the critical point; this is interpreted as a conse-
guence of the long range and axial anisotropy of the dipole-dipole interaction. In passing, the behavior of the
lattice Green function for the anisotropic dipole-dipole potential near the critical point is thoroughly examined.

PACS numbe(s): 05.70.Ce, 05.70.Fh, 05.70.Jk

[. INTRODUCTION In the present paper, this is carried out within the frame-
work of thestatic fluctuation approximatiofSFA). This ap-
The proton model with tunneling was suggested by Blincproach was suggested earlier by one of the auttRmiR.N)
[1] in 1960 for describing the soft-mode behavior in ferro-and successfully used for calculating the thermodynamic
electrics of the order-disorder type with hydrogen bondsproperties of the Ising and Heisenberg mod&ls
where lower states predominate. The main success of this In fact, the SFA can be invoked for calculating thermo-
model was in explaining the substantial isotopic shift of thedynamic properties and equilibrium correlation functions
critical temperaturd .. The model hinges on the suggestion (CFs of a variety of many-body systems with strong inter-
that each proton can tunnel between two equilibrium posiparticle interactions. A small parameterrist used and the
tions of the hydrogen-bond potential. If the local potentialapproach can be applied to various geometrical configura-
has two deep minima then, for statistical purposes, it is intions anddifferent boundary conditionsncluding the con-
teresting to observe that there exist only two degeneratgentional periodic boundary conditions widely used in statis-
states, each state belonging to one local minimum. If wdical mechanics.
neglect the excited vibrational states and consider only a The SFA hinges on the replacement of the local field op-
two-level system, then the process of tunneling can be deerator with its mean valuéa c numbey; only the quadratic
scribed in terms of pseudospinAs a result of such a trans- fluctuations of the local field are retained. As a result, for
formation in the pseudospin formalism, the tunneling Hamil-lattice systems, the so-calleifference long-range equations
tonian will coincide with the Hamiltonian of the Ising model (DLRES) can be obtained(This term was taken from Ref.
in a transverse field [4], where such equations were used to obtain the exact so-
lution for the ferromagnetic Ising chajnin general, the ex-
1 act DLREs for Hamiltonian1) are nonlinear and analytic
H=—AY S\—-, Ui SFSy - (1)  methods of solution of nonlinear difference equations are not
f 255 known. However, the above replacement leads to the ap-
proximate linearization of the exact DLREs and transforma-
Here A is the frequency of the tunneling arld, is an  tion of the conserved nonlinearity into a system of self-
intercell interaction having for most ferroelectrics the aniso-consistent equations. Beloy&ec. 1) we show how this
tropic dipole-dipole form. This model can be used as a presingle and controllable replacement is sufficient to calculate
liminary step for describing the structural transitions of theall main thermodynamic characteristics of the system. Prior
order-disorder-type ferroelectrics with tunneling. It has beerio this(Sec. I), we present the basic ingredients of the SFA,
suggested by Kobayas}t] that the hydrogen phonon modes together with the linearized DLRE for the transverse Ising
play an important role in KH,PO;. model. Our conclusions are summarized in Sec. IV and
On the other hand, Hamiltonians with spin-phonon inter-mathematical details are relegated to an appendix.
action containing linear phonon operators can again be re-
duced, after suitable canonidainitary) transformations, 0@ | ‘ppNcipLES OF THE SFA: THE LINEARIZED DLRE
Hamiltonian of typ_e(l), albeit _thh a r_nodlfled mtgracthn FOR THE TRANSVERSE ISING MODEL
between pseudospins. Accordingly, it is useful to investigate
thoroughly the thermodynamic properties of the systems de- For the present purposes it is convenient to express the
scribed by Hamiltoniar{1). initial Hamiltonian (1) in the form
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arbitrary combination of pseudospin variabl&, with

H= —Ef (AS{+0¢Sf), (2} nodesnot coincidingwith the chosen nodé (f'#f). The
equations for these average values can be obtained using the
whereo; defines the local field operator: well-known relation
oi=hi+ >, U S (3) (B(B)C)=(CB), (7)
f/

. ) ) _B,C, being any quantum mechanical operators. Putting in-
The Helseanberg equations of motion for the pseudospitead ofB the above solutions for the pseudospin compo-

s SYA (y=x,y,z), then using the commutation rules for
—=[H,S]=—i0:S, (43) pseudospin operatorS€ 3), one can obtain, after some al-
dr gebraic manipulations, the following DLREs for the system:
dsf . . N
4. ~[H.S{1=—iASi+ios], (4b) (StA) = ni{oiA). ®
ds (S{A)=A - ni(aiA), 9
d—=[H,S§]:iAS¥. (40
T where

Here r=it. According to the SFA,
1 B4
(ap)?=((a1)?). (5) ﬁfEZ—than | (10)

The underlyingphysical meanings the following. The true
guantum-mechanical spectrum of the operatpdefined by
Eq. (3) is replaced with a distribution. It is then attempted to
incorporate into the picture the moments of this distribution.
As a first step we retain thquadratic fluctuationsof o .
This leads to the approximate but linearized DLREs whic
can be solved self-consistently by well-known mathematica
methods. Approximatiois) allows us to increase the region
of applicability of the SFA(in comparison with previous
attempts[3]) and obtain the DLREs for a wide class o
Hamiltonians.

With this approximation, the solutions of the Heisenberg
equations of motion(4) can be obtained in the following

For the one-dimensional Ising model of ferromagnetics,
equations of this kind were obtained in Rpf]; these made
it possible to determine the exact solution for various bound-
ary conditions. In the SFA the DLREs are linear and self-
hconsistent. The DLRE$8)—(10) define all thermodynamic
properties of the Ising model in the transverse field.

We shallassumethat (i) a homogeneous external field is
applied, (ii) the lattice is translationally invariant, andi)
¢ the quantitiehy and ()¢ do not depend on the node indgx
henceforth they will be denoted thyand(). Now, putting in
Eqg. (8) A=1, we obtain the following equation for the aver-
age dipole moment:

closed form:
[SH0)((a)?) — SH0)Aay] (Sf)=hy+n:U(0)(S) (11)
(1) = S{(0)+ o
f
XcosQT—l—iﬂsin Q¢7)S((0 o hp
[coshQ¢7)—1] Q; h(Q7)S{(0), <S>_Wl—p)' (12)
(6a)

Herep is given by the dimensionless expression
[S{(0)o;—S{(0)A]
SY(r)= f f
V()=
Q4

sinh(Q¢7) + cosh{Q;7)SY(0),
(6b) p=7>, Ut =7U(0), (13)
f!

[Sf(0)A%—S{(0)Aay]
0f

(7)=S{(0) + U(0) being the zero Fourier-component of the potential.
From Eq.(11), denotingA S{=S{—(S;), we can rewrite
S/(0)A Eg. (8) in a form more convenient for practical calculations,

sinn(Q¢7). (6c)  namely,
Q4

HereQ;= A+ ((o)?) is the fundamental frequency of the (ASTA) = 17(Aa(A). (14
dipole moment induced by the quadratic fluctuations of the

local field. These solutions allow us to find the CFs,From this last equation one can determine the pair CF. To
(SfA).(SfA),(otA), whereA is an operator containing an this end we put in Eq(14) A=AS;, ; so that

X[cosh(Q;7)—1]+i
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(ASIAS )= n(Ao(AS,,)
= U ((ASH)?)

+ 7’] 2 Uffrr<AS?,,AS?,>C,

-

(19
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Invoking Eq. (10), which itself represents a self-consistent
equation that defines the temperatiif@,A,(S?)), together
with Eg. (13), we obtain

Q(p,A(S?))
Q(p,A.<SZ>) '
u(0)

T(p,A(S))= (22

2 tanhl(Zp

(--+). signifying the true correlators between pseudospins lo-
cated at different nodes of a lattice. To find the pair CF from Nyt we determine the average energy. From .

Eqg. (15), we imposeperiodic boundary conditionsin this

case, using the respective Fourier transforms of the pair CF

and potential, we find

1
(ASiASZk):((AS?)z)[m— 1} (16)
or, in the node representation,
] {(ASH?) o explikerep)
=((ASH)?)G(7,r¢s0), (17)

G(n,r¢) being the lattice Green function.
From Eq.(12) it follows thatp=1 is a singular point. If

p=1, then, ath—0, (S*) can assume any value. Thus, it is

(Hy=— 20 (AS{+Sio) = =N(A(S) +(Sfo)).
(23

Putting in Eq.(8) A=cf and in Eq.(9) A=1, and using our
main approximatior(5), we finally arrive at

P r02(p.a(s)].

u(0) 24

L
N(H=
Now, above the transition temperatufg, (S*)=0 and

N Q(pA(S)| A
<S>‘29<p,A,<SZ>>ta”P( 2T )

“uo)”
(25

convenient to choose as anindependeniparameter. The This equation describes the paraelectric phaiskeout spon-
valuep=1 defines a possible phase transition for the spontaneous polarization.

taneous polarization~(S%)). To see this we first examine

the local-field dispersion

Q=A%+ (o0)*+((Aoy)?). (18)
From Egs.(16) and(17)
(Ag)?)=2 UgpUgn(AS{,ASE)
e
_((AS?)2>2 U(k)U(—k)
- N T 1-7nU(k)
U(0)X((AS?)?
E—L(QJ[Gw)—l]. (19

Here G(p)=G(p,0) defines the momentum-space lattice

Green function

1

= 12
CPTNE Ui

Below the transition temperature, we obtain the ordering

effect by putting in Eq(10) p=1. We then have

1 1 k(Q(l,A,(SZ))
U) 2Q(1A,(S?) 2T

. (26

where

Q(1LA(SH))

= JAZ+($)2U%(0) + (1~ ($)?)UAO)[G(1) - 1],
(27)

Equations(26) and (27) define the spontaneous polarization
as a function ofT. It follows that

(28)

1 [ A\ 1
oIr-1==\ 3~ oy 2o

It should be stressed that®t=0 the upper value is less than

T=0

the corresponding value obtained in the framework of the

mean-field approximation[5,6] where, at T=0, (S

which depends on the dimension, geometry of lattice and the-r1 [ A/U(0)]2}Y2 since G(1)<2.

form of the potential. Using Eqg3) and (19), we have b

Q(p,A(S))

U?(0)
02

= \/A2+<SZ>2U2(O)+ %—(SZV) [G(p)—1].

(21)

The ordered phasgS*) is temperature independent:

A
X\ —
<s>——U(0). (29)
This coincides with the result given by mean-field theld@/
The critical temperature is defined from Eg2) atp=1 and
(S$)=0:
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2 — TABLE I. Values of the coefficients in expressiof36) and
U(0)[2A/U(0)]*+G(1)-1 (30) (44 for cubic lattices.

c

" Atanh [[2AIU(0) ]2+ G(1) - 1]

Lattice z Va u(0) a B y

This equation describ€eE, as a function of the tunnel split-

ting A. This is different from the value corresponding to the SC 6 1 4723 —0.1649 —0.4945 4r "

ordinary Ising model in the SFAX=0): bcc 8 1 3w 0.247 0.709 33
fcc 12 272 4(2Y?m/3  0.237 0.713 4272

U(0)yG(1)—1 a1
c— —
4tanh '[VG(1)—-1] mations are made. This is related to the fact that the

thermodynamics of the model crucially depends on the lat-
up to the valueT =0, whereA=[U(0)/2]y2—G(1). If A jce Green function which, as already remarked, includes the

>[U(0)/2]y2—G(1), the ordering effect does not play a dimension, geometry of lattice and the Fourier-transform of

role. the relevant potential.

The static susceptibility above the critical poigtk) is In the theory of magnetic models with short-range inter-
calculated easily with the help of the fluctuation-dissipationactions the Fourier-transform of the potential can be deter-
theorem minedexactly in some cases even the analytic expression for

the lattice Green function can be found. However, in the
theory of structural phase transitions, the problem is much
more complicated. In that case we have a long-range poten-
tial, presumably with an anisotropic dipole-dipole interac-

keTx(k)=(ASASE ). (32

Using Eq.(16), we finally obtain forT=T,:

1 1 tion. The exact analytic evaluation of the Fourier-transform
x(k)= -1/, (33 of this potential is not possible; so is the corresponding cal-
4T(p,0) [1-pU(k)/U(0) culation of the lattice Green function. Major simplifications

are needed if progress is to be made in this respect.

Thus, having demonstrated qualitatively the effects of the
local-field quadratic fluctuations, we shall limit ourselves to
the long-wavelengthapproximation. Another simplification

1-p will be the restriction to monoaxial crystals. The archetype
[x(0)] =4T(p,0) —. (34) of such ferroelectrics is threeglycinsulphat€GS). This
p ferroelectric of the order-disorder type has been studied care-

whereT(p,A,(S%) is defined by Eq(22). In particular, the
homogeneous part of the static susceptibility abdyeis
defined by the expression

. . . . ully both experimentally and theoretically; it has been
Clearly, then, the static susceptibility has a singular point aghgwn that it Ft::xhibits a Zritical phenomeno)rg in the vicinity

p= 1—in cor]fqrmity with the foregqipg cpnclusion concem- T, [6]. Accordingly, it is reasonable to assume that mono-
ing the possibility of a phase transition in the system at th'saxial crystals of the TGS type can be described by the
P Euati 5(10), (12), (17), (20), (21), (22), and(30) f present model.

quation ’ ’ ’ ' ] , an orm Unfortunately, however, the long-wavelength approxima-
a closed system that completely defines the thermodynamq?o

f the transverse Ising modeSe 1) for a reqular lati f n of U(k) cannot lead to a closed expression; so we are
of the transverse Ising mo (.:2) or a reguiarfatlice ot = ¢, .aq to consider only the expansion of the lattice Green
any dimension and for ararbitrary interaction between

spins function nearT. as the most interesting region in the whole

. . N . temperature range.
It is worth noting that approximatio(b) incorporates the P g

. X S In the long-wavelength approximation for the monoaxial
higher-order fluctuations of the local field in the sense that ferroelectric, then, the potential(k) has the forn{7]
(o) =((a)®"; (o) t=0 (o))" (39
z

The main difference of the SFA from the exact solution is k?
that the true quantum-mechanical spectrum of the operator (36)
ot is defined by finite or infinite eigenvalues and all calcu- . - ]

lations are finally reduced to the consideration of nonIinearT_he expansion coefficients d_epen_d on the structure; these are
DLREs which at presentannot be solved analyticallylo given _for some types of lattices in Tablg[a]. The corre-
avoid this principal difficulty, the DLRES are approximately sppndmg expansion for the Green function near the critical
linearized and the nonlinearity is retained in the form of aPoint has the form(see the Appendix

self-consistensystem of equationgin our case Eqs(8)—

(10)]. G(s)=G(0)—ZO a,e""2In(e) + Zl b,e";

2

U (Ky Ky ko) =U(0)— ak?+ K2 —y| =3 | + Ok} k%).

IIl. THERMODYNAMICS OF THE MODEL B »
WITH DIPOLE-DIPOLE FORCES e=(1-p)"= (37

The full solution of the above system of nonlinear equa- Having obtained the analytic expression for the lattice
tions can only be obtained by numerical methods. An anaGreen function neaf., one can consider the corresponding
lytic solution is out of the question unless additional approxi-specific-heat behavior. The specific h€atis defined by
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FIG. 1. The dependence of the critical temperafliféU (0) of
the fcc lattice on the tunneling parameter=A/U(0). The naxi-

mum value of T,/U(0) at A=0 equals 1.1230T.=0 at A
=1.905.

(38)

the average energyd) being given by Eq(24) and the tem-
peratureT by Eq.(22). In the paraelectric phaséS)=0):
1 (d{H)/dp)
"N dT/dp
_pQ*(p)
T(p)
[Q?(p)—2A%])/U(0)—[U(0)/4p][dG(p)/dp]
R(p){A*+[U?(0)/8p][dG(p)/dp]}—Q*(p) |’
(39)

B 4pT(p)
U(0){2—G(p)—[2pA/U(0)]}"

R(p)=1 (40)

To first approximation we can put in EB9) p=1, since all

the quantities in this expression are finite at the critical point,

except the derivativel G(p)/dp. Expansion(37) yields

dG(p) _[ao )_bl

i (4

?_ b2 Z_aoln(f:)),

which is divergent at the critical point. Howevémn, the limit

as p—1, we find that the specific heat at the transition point

remains finite with the value

<QX>

0.30 F

0.20 |-

000 bbb o1 10,
00 05 10 15 20 25 30

T/T,

FIG. 2. The dependence ¢8) for the fcc lattice onT/T,, for
some values of.
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FIG. 3. The dependence of the spontaneous polarization
(<(S*)) of the fcc lattice on the reduced temperature for some

values ofA.

C—_Lz(l) 42
"= RODUO)T,” 42

Clearly, it is impossible to find an expansion for the specific
heat in terms of the temperature. This is related to the fact
that the expansion of the temperature deviatie(e)
=T(e)/T.—1 has the form

7(g)~Uje+Use In(e)+0O(&?), (43
which does not have an inversér). The explicit forms of
the coefficiental; andu, are somewhat cumbersome and are
not given here.

Similarly, it can be readily shown that to the left of the
critical point the specific heat also remains finite with the
same value as E@42). Thus,the SFA predicts the absence
of the specific-heat jump at the critical point with long-range
dipole-dipole forces

The values of the lattice Green function can be deter-
mined for the whole range of the parametes[0,1] only
numerically. To this end we use

L N (. L

where the integration runs over the main Brillouin zone,
U(k) being given by Eq(36). The temperature dependence
of thermodynamic quantities can then be readily determined
in the present model.

Figure 1 gives the dependence of the critical temperature
T./U(0) on the tunnel splittingh=A/U(0). In Fig. 2,(S*)
is plotted as a function of/T,. As already pointed ou{S")
remains constant for the temperature rangé.<1. Figure
3 shows the spontaneous polarization($*)) as a function

of T/T. for several values ofA. The tendency ofS*) de-
creasing with increasing is evident. In Fig. 4, the tempera-
ture dependence of the specific h€y{(T/T,) is given for

various values of\. It is interesting to note this nonstandard

behavior ofC,,, especially in the intervaA €[1.5,1.9, the
local maximum appearing in the temperature rafge .
=1. This behavior can only be ascribed to the long-range
anisotropic dipole forces.

Two remarks are in order here. The first is that, near the
critical point, C,, behaves almost logarithmically—a conse-

(44)
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Cn summation by an integration, we conclude that this problem
is reduced to the investigation of the following integtdr
longitudinal correlations

1-(8)?
<S% ?+R>C: 32773

fw jw JOG exp(iRz)dxdydz _
o _ol—p[l—ar?+Bz2—y(z2/r)?]’

(46)

3.0

r’=x?+y2+z2. A similar expression for the transverse CF
Ch can be obtained, but with exp) replacing expR2. Simi-
lar integrals are considered in R¢L1].

It is concluded that the asymptotic expansion of liwe-
gitudinal CF consists of two components

0.30

0.20

<S%S%+R>:<S?S?+R>l+<s?s?+R>osc- (47)

0.10 F The first two terms of the first component are of the form

000 1 L L L A
Z oz N
00 05 10 15 20 25 30 (SfSfip)1 =~
T, R

1<A(p) B(p)) 48

a\RTR)

— 00

FIG. 4. The deper_'dence of the dimensioniess specific hea}tn turn, the Ornstein-Zernike theory for isotropic potentials
Cy/U(0) of the fcc lattice onl/T, for some values oA.

predictsthe asymptotic form (R)exd —R/x?] (y being the

fth . . . f Eq(43). Thi homogeneous part of the static susceptibilitfhe second
quence o t ea_pproxma_tenversmn 0 q:( ). This agrees component defines the oscillating part of the longitudinal
gualitatively with experimental observatio®]. However, correlation function

for a detailed comparison with experiment, a separate inves-
tigation is called for. The second remark is that Fig&) 4

and 4b) demonstrate clearly the competition between the (SESE, Rose = E C(p) COS{%R)_D(D) sm(ng)),
singular component o, (predominating at smalk values Rl éR (éR)
and t_he E:gular contributiofpredominantly at large\ val- (49

ues;A— A ~1.9, where the order paramet&?) is close to
zerg. This effect has been known for some time in thewhereé=/(1—p)/(1—p+yp).

theory of the anisotropic Ising modgl0]; in Ref.[9] it was A similar result applies tdaransversecorrelations. In that
taken into account qualitatively by adding a constant to the&ase, the first two terms of the first component read
fitting expression foIC,, .

The pair CF is defined by E@17) in terms ofp(T), the . 1/M(p) N(p)
relative distanc&®k andU(K). It is interesting to compare the (St Stir)1 ~ 4 ?ﬂL RS |’
asymptotic behavior R—) of this function to the well- R
known Ornstein-Zernike result. The symmetry Wtk) de- - . )
fines the extreme anisotropy of the correlations involved. Ifa‘t the cr_|t|cal point p=1), the first two terms have the
therefore makes sense to consider the behavior of this fun@SYMPtotic form
tion asR—« along the axis of anisotropfongitudinal cor-
relations as well as perpendicular to the axigansverse (SFSE, o) ~ 1 _ (3a—p)
correlations. PR e 8TaR  8raJayR2

Using Eqgs.(17) and(36), we can write the following ex-

(50

H Z QZ .
pression o Sf S, g): (longitudinal part of the CFE (51)
1-(s)? . | N
(SfStiR) = This behavior remains valid for the temperature rafige
4N <T,.. The above expression is proportional to-{S?)?),
exp(ik-R) because in the ferroelectric phase 1 and the spontaneous
X polarization is the order parameter.

€ 1-p[1-ak®+ Bk; — y(k:/k)?J/U(O) The dependence of the CFs dnhand R can be found
(45) numerically. This has been undertaken for the face-centered
cubic lattice in the long-wavelength approximation k).
the long-wavelength contributions dominating. Replacing theThe results are given in Figs. 5-8.
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<48iSL, > <4SiS;, >
1.0
08
06 [
04
02 [
0.0....I...-I.|..I..|| 00'.I.I.I.I.|.I.
0 5 10 15 20 0.0 1.0 20 3.0
R/a T/T,
FIG. 5. The dependence on the relative distaRad the longi- <a8iS, >

tudinal CF for the sc lattice at the critical point.

IV. CONCLUSION

In this work we have suggested an approximatitime 020 |
SFA) for calculating the thermodynamic characteristics of [
the proton model with tunneling. Our method can undoubt-
edly be generalized for more complex spin Hamiltonians
with an arbitrary interparticle interaction. [

The physical meaningf this approximation is the follow- 0.00 L
ing. The true quantum-mechanical spectrum of the operator : R
o [defined by Eq(3)] is replaced with a distribution. As a FIG. 7. The dependence om/T. of the longitudinal CFs

first step, we have calculatesglf-consistentlfhe quadratic (@) (452 2, ) and(b) (452 2, ,.), for the sc lattice for two values
fluctuationsof of which lead to the approximate blinear- of A,

ized DLREs[Egs.(8) and(9)]; these equations can, in turn,
be solved by well-known mathematical methods. The SF
has allowed us to consider the complete thermodynamics
the model; specifically, we have obtained the analytic ex-,
pressions for the spontaneous polarization, the specific he
the pair CF, and the static susceptibility of the order-disorder
ferroelectric. We have then determined numerically the main
characteristics of the system versus the reduced temperature
T/T. and the relative distandg/a (a being the lattice con-

eneralizations of those obtained within that approximation.
The main deficiency of the SFA is that it cannot take into

ccount thedynamicsof the local fields(the operatoro; is,
effect, the approximate integral of the motjoThis is

< 4S(S;,, >

stan). The logarithmic behavior of the specific heat to the 016 k
right side of the critical point has been predicted; it is a
consequence of the long-range and axial anisotropy of the 012 [
dipole-dipole interaction. The SFA has enabled us to explore s
the asymptotics of the CFs at large interparticle separations. 0.08 [
In fact, our present approach can be regarded as a basic s
theory for determining all integral characteristics of the 0.04 |
transverse Ising model. No other systematic microscopic ap- -
proaches exist except the mean-field approximation and 000 Lt bl ol Lol
renormalization group theof6]. Our results are essentially o 1 2 T?T 4 5 ¢
<488} > < 48{S},,, >
0.20
- (b)
0.15 -0.015 |
0.10 I
-0.025
0.05 i
0.00 0.035
5 1 1 1 1 1 1 n [l 2 1 "
0.05 00 05 10 15 20 25 30

T/T,

R/a

FIG. 8. The dependence oi/T. of the transverse CFs

FIG. 6. The dependence on tRéa of thetransverseCF for the  (a) (457 S 5) and(b) (4Sf St.. 3,), for the sc lattice for two values
sc lattice at the critical point. of A.
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precisely why we have qualified this approach as gtegic As can be seen from E@Al), the integration runs over
fluctuation approximation. However, this approximation canthe main Brillouin zone representing a cube with side/2.
boast the following features: To proceed further the true first zone is replaced with a

(1) Its simplicity and transparent physical content. In ad-sphere whose radiu@ given by 4rQ3%/3=(27)3. G(p) will
dition, it can readily be applied to a wide class of physicalthen assume the form
systems with an arbitrary interparticle potential and an arbi-

trary integral dimension. _ Q, 1 2
(2) Critical phenomena in the system can be described by G(p)= 272 ) Sl 0 dx p(y=pk")
invoking the controllable approximatiofs) and nothing
else. In particular, it is not necessary to develop any specific , 1-pt pak®) 7t
methods for phase-transition phenomena; the critical behav- X xEF p(y— Bk?) ' (A3)

ior is obtainedautomaticallyfor some value of the control

parameter(in our casep=1). The possibility to calculate x=cosé. Integration over the angular variable becomes
CFs ofany orderby means of DLREs distinguishes the SFA trivial and we get
from other approaches based on some modification or an-

other of the mean-field approximation. ) atan\/p(y—ﬁkz)/(l— p+pak?)

(3) The SFA gives reasonable accuracy in estimafipg G(p)= 2 ZJ k Jp(y—BK3)I(1—p+ pak?)
and other thermodynamic parameters for a wide range of Y
temperature and external fields.

(4) The principal differencebetween the exact solution
and the SFA is the following. The attempt to obtain the exact
solution leads to DLREs containing higher ordeot only
quadratig fluctuations of the local fieldinfinite in general.
It yields a system of nonlinear difference equations; analytic N=[(1-p)/ap]Y?=s/a’?
methods of solution areot known In the SFA we are forced
to consider only quadratic fluctuations of the local field, — 2
higher-order fluctuations being incorporated only in some W(k,\)= atany(y— gk)/a(k+1%)
average sensgsee EQ.(35)]. The DLREs obtained in this V(y—Bk?
case ardinear and self-consistenthey have enabled us to . ] ] )
use well-known mathematical methods to determine the The function W(k,A) is continuous in the region

W (k,N)dk. (A4)

471' p\/—,f k+7\2

Here

(A5)

complete thermodynamic solutions. {[0.Q%1X[OAo]}[No>0, (¥/5>Q?)], but differentiable
only in the region{[0,Q%]X (0,\,)} because its derivative
ACKNOWLEDGMENTS W' (0\N)c1/N. A Taylor-series expansion is therefore out of

the question at this stage. To circumvent this difficulty we
Two of the authorsH.B.G. and R.R.N. gratefully ac- introduce the variablet=\(N?>+Kk)[1—(B/y)k]. After
knowledge partial financial support from the Deanship ofsome transformations we obtain the following expression for
Scientific Research, University of Jordan, under Grant Nothe integral(A4):
5/3/2/4635 dated 5/12/1998.

va B t2-\2 r( \[ )
: G(p)= atal
APPENDIX: BEHAVIOR OF THE LATTICE GREEN (p)= 2m2pyay I [1+(BI7)PT
FUNCTION FOR THE ANISOTROPIC DIPOLE-DIPOLE
POTENTIAL NEAR THE CRITICAL POINT B _
. L e . =———"— | Vt(t+2\) V(t,\)dt, A6
The investigation of the critical behavior of the model 27\ ay fo ( ) W(tA) (A6)
considered requires the evaluation of the lattice Green func-
tion where
Vg T T T d3k Q +\ 1
(2m)° ) -7) -7 ) -z1=pU(k)/U(0) V1-—(ply)Q? J1=(Bly)
v, being an elementary volume of the reciprocal lattice and o =
U(k) the Fourier transform of the interaction potential. In P(t,\)= atar{(t+1) a/2 1/2 (A8)
the long-wavelength approximation for the monoaxial ferro- [1+(Bly)(t+A)7]

electric,U (k) has the form{7 —
(k) 7] The functionW’ (t,\) e {{0,B]X[0\¢]}; so itcanbe ex-

2 panded into a Taylor series over
U (Ky,ky k) =U(0)— ak?+ gkZ—y k2 +0O(k% k%), N
— Z1 [ 9™P(t,N) -
(A2) \I’(t,)\)=m§=:0 H<—atm ) tmzm§=)0 Cn(ME™.
wherea, 3,y are the expansion coefficients depending on the =0 (A9)

dimension of the latticéfor some types of lattices these are
given in Table ). Inserting this expansion into E¢A6), we find
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©

- B I'(m+3/2
G=— ¥ cm(x)f £ 12, T4 2xdt )= —22 S o (ol (2nymre )
2w \Jay m=0 0 2w \ay m=0 \/;(m+2)!
v, O 1 3 ) B) C(m+3/2) = (m+ 1)
=—— cy(M)®P| = m+ =;2)\ |, (A10 X|Inl 5| +(—=1)
2ty i V) (2 512\ |, (AL0) 2 2
*© Bm+27n
The asymptotic expansion of the integral + E ——(2\)". (A13)
n=0zm+2 M+2—n

im® (o, 8,6)= tha— L(t+g)dt, (A11) Expanding the coefficients,,(\) in a Taylor series
c
Cn(M) =2 AL (A14)
is standard. For the case+ & (= an integer this has the =0 b
following form: we finally obtain
N\ (L ['(N—o+p) - -
_ _N - _ A \N+1 _ _ n+2 n
O(o,8,e)=¢ (U)In —|+(=1) o) F(NT 1T ) G(g)=G(0) HZO ane |ns+n2l b,e", (Al5)
LN-n where
X[P(N=0)=g(N+D)]|+ > "
n=0{#N) 50 e Zi Co(0)BMH2 v
= , 8= .
(A12) m?Jaym=o mM+t2 0 Admay
(Al6)

I'(x) being the gamma function anf(x) the digamma func-
tion. In our cases=3, d=m+3, N=m+2, L=B, ¢ The remaining coefficientay,b, (n=1,2,...) aresome-

=2\. Thus, what cumbersome and will not be given here.
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